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Computational Methods of Discovering Gene Modules and 

Constructing Regulatory Networks 

 

Introduction 

Transcriptional regulation provides cells with the critical ability to react to environmental 

stimuli by altering protein expression levels. It allows cells to exhibit complex behavior such as 

adaptation and differentiation. In eukaryotes, this is accomplished primarily by the binding of 

transcription factors to form protein complexes that can either activate or repress gene expression. 

With the ability of whole genome sequencing and high throughput data gathering, the emerging 

field of systems biology has begun to tackle the problem of characterizing and constructing a 

genome scale regulatory network. Such a network would encompass all the genes and how their 

products affect the transcription of all other genes. This genome scale network would allow a 

more comprehensive understanding of mechanisms behind cellular behavior and pave the way 

for whole cell modeling. However, our current knowledge of transcription factor binding sites 

and their effect on gene expression on a genome scale is still very limited (Abnizova et al, 2007). 

Computational methods of analyzing and integrating high throughput data remain the most 

efficient way of tackling such a large-scale problem. 

It has been shown that regulatory networks are often modular in nature with a few highly 

connected nodes and closely interacting genes (Zhan, 2007). These gene modules are defined as 

sets of genes which have similar expression patterns and are bound by the same set of 

transcription factor (Bar-Joseph et al, 2003). Therefore, the construction of a gene regulatory 

network follows from the identification of gene modules and their interactions. Two recently 

developed high throughput technologies that have been essential to studying gene modules and 

regulatory networks have been microarray expression chips and chromatin immuno-precipitation 

on chip assays (Liu et al, 2007). The former allows for the measurement of the expression levels 

of all genes in the genome. More recently, the latter technology combines immuno-precipitation 

techniques with microarray chip technology to reveal transcription factor and DNA binding 

interactions. 

However, the use either technology on its own has significant shortcomings. Initially, 

clustering algorithms were used to analyze expression data in order to find co-expressed genes. 
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These sets of co-expressed genes could not be described as gene modules though since one 

cannot definitively identify these groups of genes as being regulated by the same pathways and 

transcription factors (Markowetz et al, 2007). Therefore, it is possible that under conditions that 

have not been tested, these sets of genes would fail to co-express. On the other hand, using 

transcription factor binding data along says nothing of the effect on the expression of the genes. 

It is possible that the binding of the transcription factor does not alter expression at all. In 

contrast, methods of combining this heterogeneous set of data allows for the strengthening of 

signals in the inherently noisy and often under sampled data of microarray chips (Liu et al, 2007; 

Luo et al, 2007). 

Thus, much work has been done to create computational algorithms for the incorporation 

of these two types of data, along with other genomic data, in order to accurately identify gene 

modules.  There have been many such methods developed and one of the first such methods that 

moved beyond simple expression data clustering was created by Segal et al, 2003. Their method 

only incorporated expression data with motif data. Since then, more complex algorithms have 

been developed and this study will present five of these methods to gain insight into their scope 

and evolution (Table 1).  

 

Name Description Reference 

GRAM Searches for co-bound genes with a strict cutoff. 

Then relaxes cutoff for genes that co-express with 

the original set. 

Bar-Joseph et al, 2003 

SAMBA Discretizes expression and binding data into gene 

properties. Algorithm then looks for genes with 

statistically significant common property sets. 

Tanay et al, 2003 

ReMoDiscovery Stringent and relaxed two step procedure that 

combined motif, expression, and ChIP-chip data. 

Lemmens et al, 2006 

COGRIM Uses a Bayesian network to model expression level 

as a function of transcription factor expression and 

binding. 

Chen et al, 2007 

Inferelator Uses biclustering to group co-expressed genes and 

then machine learning to infer regulatory influence 

from RNA and protein expression levels. 

Bonneau et al, 2006 

Table 1. 
A list of relevant computational methods for combining heterogeneous data sets for gene module 

identification and regulatory network construction. 
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Methods 

 

GRAM (Genetic Regulatory Modules) Algorithm: Bar-Joseph et al, 2003 

The GRAM algorithm was developed to integrate microarray expression data and ChIP-

chip binding data as Bar-Joseph et al. viewed these as complementary pieces of data. In doing so, 

they hoped to reduce the level of noise inherent in microarray data and accurately identify gene 

modules of co-expressed and co-bound genes. The algorithm beings by exhaustively identifying 

all combinations of transcription binding and found the sets of genes that corresponded to these 

common transcription factor bindings. The initial criteria for determine a binding event was set 

to be stringent, (p-value threshold of .0001) in order to reduce the incidence of false positives at 

the expense of false negatives. A second step incorporating the expression data using relaxed 

transcription factor binding thresholds that would recover the false negatives without increasing 

false positives. This process involves determining the “center” of the expression data for the sets 

of genes in each tentative module. This could be done by a variety of metrics such as Euclidean 

or angle distance where the dimensions of the space corresponded to the number of conditions in 

the expression data. Using this expression center, one could remove genes from the module 

which were too dissimilar in expression and add genes that were co-expressed with a lower 

transcription binding threshold (p-value threshold of .001). Thus, one would have modified the 

original transcription binding module resulting in a final module whose genes were co-expressed 

and co-bound with false positive rates better than if one had only used one set of data alone. 

This method allows genes and transcription factors to belong in more than one module 

and connecting the interactions between modules could lead to the construction of regulatory 

networks. Although this type of analysis cannot interpret dynamic data, it was able to identify 

possible complex regulatory mechanism such as feed forward loops. These were characterized 

by a transcriptional regulator binding to a gene that produced another regulator, both of which 

would then bind a set of common genes. However, the inability of this method to take advantage 

of time sequence expression data was a notable shortcoming (Ernst et al, 2007). It is often the 

case that two gene who are being regulated by the same transcriptional factor may exhibit 

opposite transcriptional influence (either activating or repressing). The statistical and static 

approach by which this method incorporates expression data prevents it from predicting 

activation or inhibiting relationships between transcription factors and regulated genes (Li et al, 
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2008). In addition, the p-value thresholds are rather arbitrary (Chen et al, 2007). However, more 

recent methods have used more sophisticated algorithms to overcome these shortcomings and 

have shown to outperform the GRAM algorithm in identifying functionally relevant gene 

modules (Liu et al, 2007). 

 

SAMBA (Statistical-Algorithmic Method for Bicluster Analysis): Tanay et al, 2003 

SAMBA takes an entirely different approach to incorporating heterogeneous data sets. 

First, it converts all information about the genes such as expression data and binding data into 

generic gene properties. They then represent the set of genes and gene products as a weighted 

bipartite graph in which a gene is linked to a gene property via a probability score which 

corresponds to the relevance of the gene property to that particular gene. The consequence of this 

uniform, discretized representation of genomic data is that it allows for a wide variety of data 

sets besides expression and binding data. The study included data such as protein interactions 

and growth phenotypes. A biclustering algorithm is then applied to the bipartite graph to identify 

statistically significant subgraphs of gene modules. Biclustering is a method by which the rows 

and columns of a matrix may be clustered simultaneously. In this application, it allows for the 

identification of subgroups of genes with similar gene properties across a subset of the gene 

properties. This method also allows overlapping modules which is useful for network 

reconstruction. 

The primary advantage of this algorithm, the ability to incorporate a wide range of data 

types, is also a shortcoming. In the process of homogenizing data types into gene properties, it 

discretizes data that may be inherently continuous, such as gene expression. There is no 

generalized method for this discretization, leading to the loss of data content (Liu et al, 2007). In 

addition, there are more recent biclustering algorithms that have been developed which are more 

robust and can handle multiple data sets (Reiss et al, 2006).  

 

ReMoDiscovery: Lemmens et al, 2006 

The study describes this method as unique in that it incorporates heterogeneous data sets 

concurrently (non-iteratively) into the model. In addition, it uses motif data as an independent 

data source rather than as a method of checking results. The method starts with a seed discovery 

step in which stringent criteria are used to find gene modules. This includes a high degree of co-
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expression, a minimum number of common transcriptional regulators, as well as a minimum 

number of conserved motifs. Rather than exhaustively searching for gene sets, the algorithm only 

looks for “maximal modules” which are defined as seed modules which become invalid with the 

addition of any other gene. This greatly reduces the computational costs of the algorithm. Once 

these seed modules have been identified, there is a seed extension step. This involves ranking the 

remaining genes by their similarity in expression profile to the mean expression profile of the 

seed set. Cutoffs for this ranked list are determined by iteratively choosing cutoffs and measuring 

the module enrichments of all motifs. The optimal cutoff is one with maximal enrichment values. 

One benefit of this method is its ability to rank genes within each module. This provides 

a metric for the likelihood that the inclusion of gene in a module is biologically relevant. 

However, it seems that this method also relies heavily on motif data, both for seed discovery and 

extension. Since there are other methods of determining cutoffs during the seed extension step, 

such as optimizing for functional enrichment of the genes in the set through functional ontology, 

it would be interesting to see if this different parameter would affect the identification of gene 

modules. Overall, a notable shortcoming of this method is the arbitrary nature of the cutoffs 

(Chen et al, 2007). 

 

COGRIM (Clustering Of Genes into Regulons using Integrated Modeling): Chen et al, 2007 

Chen argues that the previously mentioned algorithms all use arbitrary threshold 

parameters and require knowledge about the contributions of each various data sets. To 

overcome these problems, the COGRIM method was developed which uses Bayesian networks 

to integrate and model the different data sets. Bayesian networks are probabilistic models in 

which probabilistic distributions of output are a function of a set of variables. In this case, the 

framework of the Bayesian network allows for the linear regression of gene expression data as a 

function of binding data. By entering in the heterogeneous data sets: transcription binding data, 

ChIP binding data, and sequence level binding data, the constructed regulatory model is able to 

probabilistically predict four sets of genes for every transcription factor: gene targets predicted 

by the model and binding data alone, gene targets predicted by the model but not binding data 

alone, gene targets predicted by binding data alone but no by the model, and finally, genes not 

predicted as targets by either the model or binding data alone. This model framework also allows 

estimations of interactions between transcription factors, either synergistic or antagonistic. 
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In Chen’s study, he included a performance comparison between COGRIM, GRAM, and 

ReMoDiscovery. The study used all three methods to identify gene modules in a yeast model and 

compared the within module expression correlation as well as functional enrichment. The study 

found that the COGRIM method performed better than both previous models due to its 

probabilistic nature whereas previous methods used arbitrary threshold parameters. Though 

Chen’s study used proteins as regulatory factors, the Bayesian network approach does not 

preclude using other elements as regulatory factors. One shortcoming of Bayesian networks is 

that they are in the form of directed acyclic graphs and therefore cannot represent feedback 

control mechanisms. Compared to other network representations, such as deterministic 

differential equations and stochastic modeling, Bayesian networks lose a lot of the network 

complexity. However, this is made up for by robustness and ease of interpretation (Bonneau et al,  

2006). 

 

Inferelator: Bonneau et al. 2006 

The Inferelator is an additive linear model which integrates expression data with genome 

annotation to infer regulatory influences. It uses a form of supervised machine learning in which 

it is given a training set in order to learn the regulatory network. It can then be used to predict 

gene expression in novel scenarios. Compared to stochastic modeling and Bayesian networks, 

this method is intermediate as far as complexity and robustness. Additive linear models predict 

gene expression levels using a weighted sum of its function predictors. Decreasing the 

dimensionally of data sets greatly reduces the task of a learning algorithm. Therefore, a 

biclustering algorithm, cMoneky (Reiss 2006), is used to group co-regulated genes into clusters 

before using the Inferelator. By providing the algorithm with a training set of expression data, it 

was able to infer gene regulatory influences from RNA and protein expression. This model is 

able to model both steady state and time course expression levels, as well as learn causal 

relationships through gene knockouts and time course simulations. 

While this method is very promising, there are still significant steps needed to perfect the 

method. For one, the algorithm’s modeled regulatory networks can only be interpreted as 

suggested regulatory interactions that may not resolve indirect mechanisms of regulation. Unlike 

some of the previous methods for identifying gene modules, this method does not incorporate 

direct experimental evidence of transcription factor and gene pair-wise interactions from ChIP-
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chip data. Rather than using direct measurements of transcription factor proteins levels, the 

method infers its models from RNA expression levels which add additional levels of error. The 

ability of this method to predict expression levels have so far been limited to testing using cross 

validation, an iterative process in which subsets of the data is used as training sets and validation 

sets. By incorporating accurate global data sets as well as ChIP-chip data, this method has a lot 

of potential. Whereas the methods described previously are limited to identification of gene 

modules, the Inferelator has taken the next step: regulatory network construction and predictions 

of gene expression. 

 

Discussion 

Much work has been down over the past few years in the study of regulatory network 

reconstruction via integration of heterogeneous high throughput data. It is certainly a difficult 

endeavor and these five examples provide an overview of the various paths taken to tackle the 

problem of gene module identification and network construction. While each of these methods 

has it pros and cons, the COGRIM method and Inferelator both have a lot of potential and are 

among the latest developments in the field. The chief advantage of the COGRIM Bayesian 

network approach is its abandonment of arbitrary threshold parameter, thereby giving it a 

performance edge over previous method of gene module identification. The Inferelator on the 

hand uses machine learning and additive linear modeling to produce expression level predictions 

that have been very accurate. Though it still requires modification, it has brought the field closer 

to accurately modeling cell behavior via a constructed regulatory network. Other examples of 

machine learning techniques have already begun emerging to improve upon the Inferelator 

method. 

Applications for regulatory network reconstruction are wide ranging. An accurate 

genome scale regulatory network could provide insight into new drug targets as well as the 

ability to model drug effectiveness. In addition, it may be possible to create synthetic networks 

for industrial biotechnology purposes (Hayete et al, 2007). It is also one step closer to whole cell 

modeling, an achievement that would truly be astounding. 
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